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Abstract. We present an alternative model of structure and energetics of the inverted amphiphilic
mesophases. The previous studies of the inverted hexagonal, HII , and inverted micellar cubic, QII , phases
considered the amphiphilic monolayers to be homogeneously bent. In contrast, we assume a unit cell of
an inverted mesophase to consist of flat fragments of monolayer. Hence, the unit cells of the HII and QII
phases are represented by a hexagonal rod and a polyhedron, respectively. Our model is motivated by
Turner and Gruner’s X-ray diffraction reconstruction of structure of the HII phase. The only deformation
of the amphiphilic monolayers we consider is tilt of the hydrocarbon chains with respect to the monolayer
surface, determined by the packing constraints imposed in the mesophases. Applying our recent model
for the elastic energy of tilt in liquid membranes [23], we show that: i) tilt accounts in a natural way for
the frustration energy of mesophases resulting from filling by the hydrocarbon chains the corners of the
unit cells, ii) the energy of tilt variation along the membrane surface is analogous to the bending energy.
We compute the energetics of the HII , QIIsc and QIIfcc phases and obtain a hypothetical phase diagram
in terms of the elastic constants of monolayers. Moreover, we calculate the structural dimensions of the
mesophases. We verify the model showing that the obtained phase diagram describes the recent data for
the glycolipids/water systems; the predicted dimensions of the QII phase are in accord with the measured
values; the model treats quantitatively the structural features observed for the HII phase.

PACS. 68.10.-m Fluid surfaces and fluid-fluid interfaces – 68.10.Et Interface elasticity, viscosity,
and viscoelasticity – 87.22.Bt Membrane and subcellular physics and structure

1 Introduction

Amphiphiles in water exhibit a variety of mesophases
classified according to the shape of amphiphilic mono-
layers [1]. In the natural sequence of lyotropic liquid-
crystalline phases, arranged according to their interfacial
curvature [2] (Fig. 1), the lamellar L phase consisting
of flat membranes (Fig. 1a) separates two classes of
mesophases with curved monolayers. Conventionally, a
mesophase is called normal (type I) if its monolayers
are curved toward the hydrocarbon core, whereas the
monolayers curved toward the aqueous solution form
the inverted mesophases (type II). In geometrical terms,
the amphiphilic monolayers of the normal and inverted
mesophases are characterized by mean curvature [3] of
opposite sign. The familiar examples are the cylindrical
monolayers of the inverted,HII (Fig. 1b), and normal, HI

(Fig. 1c), hexagonal phases and the spherical monolayers
of the inverted, QII (Fig. 1d), and normal, QI (Fig. 1e),
micellar cubic phases. Another class of mesophases, called
the bicontinuous cubic phases, displays sponge like shapes
of membranes, commonly described as periodic minimal
surfaces of vanishing mean curvature [4]. A way to under-
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stand the mechanisms of phase behavior of amphiphiles is
to consider the elastic energy of different mesophases [5].

In this work we will concentrate on the inverted phases
of phospholipids, whose studies are motivated by attempts
to understand the structural rearrangements of biological
membranes resulting in their fusion [6–9], rupture, lateral
phase separations and other important processes.

According to the common approach, there are two ma-
jor factors determining the type of mesophase. The first is
the spontaneous [10] or intrinsic [11] curvature, Js, result-
ing from interplay of the attractive and repulsive interac-
tions inside a monolayer [12]. Balance of these interactions
leads to an effective curvature, Js [13], determining an en-
ergetically preferable shape of the monolayer and, thus,
the type of mesophase. A quantitative treatment of the
effects of the spontaneous curvature is based on the bend-
ing model of amphiphilic monolayers [10].

The second factor results from the packing con-
straints imposed on the amphiphilic monolayers in the
inverted and bicontinuous phases [8,14–19]. Besides the
amphiphilic systems, the packing constraints have been
shown to play an important role in phase behav-
ior of block copolymers [20–22]. A simple illustration
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Fig. 1. Illustration of several amphiphilic mesophases: (a) Lamellar phase; (b) Inverted hexagonal HII phase; (c) Normal
hexagonal HII phase; (d) Inverted micellar cubic QII phase; (e) Normal micellar cubic QI phase.
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Fig. 2. Previously assumed [8,15–19] structure of a unit cell of
the HII phase with homogeneously curved interface between
monolayer and water interior.

of this phenomenon is the inverted hexagonal HII phase
formed by identical long rods, each consisting of water
core covered by lipid monolayer. The cross-sections of the
rods represent unit cells of a two-dimensional hexagonal
lattice (Fig. 1b). It was commonly assumed [8,15–19] that
in a unit cell the hydrophilic interface between the mono-
layer and the water interior tends to adopt the shape of
a circle with a curvature equal to the spontaneous cur-
vature Js (Fig. 2). On the other hand, according to the
hexagonal symmetry of the lattice, the outer hydrophobic
boundary of a unit cell is a hexagon (Fig. 2). Mismatch
between the shapes of the hydrophilic and the hydropho-
bic boundaries of the monolayer leads to its additional
deformations. The related energy is called the frustration
energy [9]. Similar considerations illustrate the origin of
the geometrical constraints and the frustration energy in
the inverted micellar cubic phases, where the unit cells are
packed in three-dimensional lattices. The reason for frus-
tration of the bicontinuous cubic phases is related to the
geometrical requirement of changing curvature along the
monolayer surfaces [14].

Competition between the bending energy and the frus-
tration energy has been assumed to drive the temperature-
induced phase transition between the lamellar and the in-
verted hexagonal phase of phospholipid DOPE [8] and to
determine a hypothetical phase diagram consisting in a se-
quence of the bicontinuous cubic, inverted hexagonal and
inverted micellar cubic phases [17].

While the model for the bending energy is well estab-
lished, the theoretical treatment of the frustration energy
still poses a challenge since, on one hand, the exact char-
acter of deformations underlying the frustrations is un-
known, and, on the other, the geometry of the packing
constraints is, usually, too complicated to be taken into
account by simple analytical means [17].

In the previous studies of lipid mesophases [14,17,18]
the deformations of frustration have been treated solely
in terms of stretch of the hydrocarbon chains filling the
corners of the unit cells of mesophases so that the frustra-
tion energy results from the chain elasticity. Within the
framework of these models it proved difficult to account
systematically for the volume incompressibility of the hy-
drocarbon chains [17]. In addition, the elastic constant
of the hydrocarbon chains determining the frustration en-
ergy, although estimated in a simple model [18], can not be
directly compared with the experimental data and, thus,
remains an adjusting parameter. As a results of these and
other complications mentioned in [17], the model of chain
stretching, although describing qualitatively the expected
phase diagrams, has difficulties with correct predictions of
the linear dimensions of the cubic phases resulting from
the phase transitions [17] and with reproducing the pre-
viously estimated value of the frustration energy [18].

The present study is devoted to an alternative model
for the frustration energy of the inverted mesophases
based on assumption that the major deformation induced
by the packing constraints is tilt of the hydrocarbon
chain with respect to the membrane surface [23]. The
main motivation of our work is due to the Turner and
Gruner’s reconstruction of the inverted hexagonal HII

phase in lipid-water systems [24]. According to these data,
the hydrophilic boundary of a monolayer in a unit cell
of the HII phase tends to mimic the hexagonal shape
of the outer boundary. The observed shape of the hy-
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Fig. 3. Structure of a unit cell of the HII phase considered in
the present work. In contrast to the previous model (Fig. 2),
the unit cell consists of six identical flat fragments of monolayer
called cassettes.
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Fig. 4. Unit cells of the inverted micellar cubic phases; (a)
sc phase; (b) fcc cell. Only the dividing surface of monolayer
forming a unit cell is shown.

drophilic boundary is reminiscent of a hexagon with
rounded corners, rather than a circle [24]. Similar shape
has been recently obtained theoretically by self-consistent
field approach for interface between domains of different
blocks in cylindrical phase of diblock copolymers [20].

To study the consequences of this observation for the
energetics of the mesophases we adopt a model different
from those analyzed previously. We assume that the hy-
drophilic surface imitates exactly the shape of the outer
boundary of the unit cell, i.e. is a hexagon for the HII

(Fig. 3) phase and a polyhedron for QII phase (Fig. 4).
Thus, the fragments of monolayer, constituting a unit cell,
remain flat, but the amphiphilic molecules are tilted with
respect to the monolayer surface. Moreover, the tilt con-
siderably changes along the monolayer, reaching its max-
imal value in the corners of the unit cell. In this represen-
tation, the energy of a mesophase is determined solely by
the tilt and its variation.

Using our recent consideration of the tilt energy of fluid
membranes [23], we analyze the energetics of different in-
verted mesophases and show that the suggested approach
not just qualitatively describes the sequences of the lamel-
lar, inverted hexagonal and inverted cubic phases regis-
tered in glycolipid/water systems [2], but also predicts
a correct order of magnitude of structural dimensions of

the cubic phases [25] and explains the structural features
of the HII [26].

However, it is necessary to emphasize that the sug-
gested model is not exact as it neglects the fact that the
corners of elementary cells of the inverted hexagonal and
cubic phases are rounded, as observed for the HII phase
of phospholipid [24]. According to the experimental re-
sults [24], the characteristic length of such rounding is
small compared to dimension of an elementary cell, what
justifies the assumptions of our model. Nevertheless, con-
sideration of energetics of rounded corners going beyond
the goal of the present study, is the matter of further so-
phistication of the model.

2 Model

We consider an amphiphilic monolayer in liquid state,
whose hydrocarbon core has properties of an incompress-
ible elastic continuum [23]. To describe the geometry and
the deformations of the monolayer we use the dividing
surface [27] lying along the interface between the polar
groups and the hydrocarbon interior [19,28] and shown
for the particular lipids to play a role of a neutral surface
[28]. The shape of the monolayer will be identified with
the shape of its dividing surface.

We assume the monolayers to form the lamellar L
phase, the inverted hexagonalHII phase and two inverted
micellar cubic QII phases with different symmetries. Each
mesophase is a periodic structure consisting of equivalent
unit cells, which are obtained by the Wigner-Seitz con-
struction.

In the lamellar phase the monolayers are flat (Fig. 1a).
In a unit cell of the HII phase the monolayer is an infi-
nite cylinder with hexagonal cross-section (Fig. 3). The
monolayers of unit cells of the QII phases are polyhedra
(Fig. 4) corresponding to sc (Fig. 4a) and fcc (Fig. 4b)
lattice structures. The mesophases are fully hydrated and
can exchange water with the surrounding medium, thus,
changing the sizes of their unit cells, if it results in mini-
mization of the energy.

It is important to underline again that in our model,
the dividing surfaces of monolayers in units cells of the HII

and QII phases consist of flat fragments, characterized by
vanishing curvature. Moreover, we assume that the area
per amphiphilic molecule at the dividing surface is con-
stant and equal in all the mesophases. Thus, the mono-
layers in the mesophases are not bent and their molecular
area is not changed. Instead of that, they are subject to
deformation of tilt of the hydrocarbon chains with respect
to the dividing surface. The tilt is determined by require-
ment that no vacuum is allowed in the system, so that the
space between the dividing surface and the outer bound-
ary of a unit cell must be filled by the hydrocarbon chains.
The illustration of this constraint resulting in tilt of the
hydrocarbon chains in presented in (Fig. 3) for the HII

phase, while for the cubic phases it is analogous although
more complicated to illustrate graphically.

We quantify the tilt t by deviation of a unit vector
n indicating the average direction of the hydrocarbon
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chains from the unit normal to the dividing surface N
(Fig. 3) [23]

t =
n

nN
−N. (1)

The tilt vectors is parallel to the dividing surface, t·N = 0,
and its absolute value is the tangent of the angle θ between
the vectors n and N.

The elastic energy f of tilt is determined, on one
hand, by the tilt vector, t, itself and, on the other, by
its change along the dividing surface. To quantify the lat-
ter we choose a rectangular system of coordinates {x, y}
related to a flat fragment of the dividing surface (Fig. 3)
and denote the derivatives of t in the directions of the
axis by tξ = ∂t

∂ξ
, with ξ = x, y. The components of the

two vectors, tx, ty form a tensor called the tilt tensor tξζ ,
the Greek indices indicating the surface coordinates x, y
[23]. The elastic energy per unit area of the dividing sur-
face can be written as [29,23]

f =
1

2
κ(tξξ + Js)

2 + κ̄ det(tξζ) +
1

2
κθt

2 (2)

where det(tξζ) and tξξ are, respectively, the determinant
and the trace of the tilt tensor, the latter equal to the two-
dimensional divergence of the tilt vector, tξξ = div(t). The
values κ and κ̄ are the bending modulus and the modulus
of Gaussian curvature of the monolayer, respectively, Js
is the spontaneous curvature of the monolayer, and κθ is
the monolayer tilt modulus.

A detailed derivation of the Hamiltonian (2) account-
ing for contributions up to the second order in the defor-

mations t and tξζ is presented elsewhere [23]. However, the

form (2) of the Hamiltonian can be directly understood on
the basis of two classical works by Frank [29] and Helfrich
[10]. Comparing the definitions above (see also [23]) with

those of [29], one see that the tilt tensor tξζ accounts for
the deformations of splay and twist introduced by Frank
for liquid crystals [29]. Specifically, the diagonal compo-

nents of tξζ represent the components of splay, denoted in

[29] as s1, s2, while the nondiagonal components of tξζ are

analogous (up to an arbitrary choice of sign) to the compo-

nents of twist τ1, τ2 [29]. The trace tξξ and the determinant

det(tξζ) of the tilt tensor are equivalent, respectively, to
the total splay, s1 + s2, and the saddle splay, s1 s2 + τ1 τ2,
as defined by Frank [29]. Hence, the first and second terms
in (2) represent the Frank energy of total splay and that
of saddle splay. As emphasized by Helfrich [10], the total
and saddle splay in the case of a membrane are analo-
gous to the total and Gaussian curvature, respectively. As
a result, the elastic coefficients determining the related
contributions to the energy (2) are equal to the bending
modulus κ and the modulus of Gaussian curvature κ̄ [10],
while the “optimum degree of splay” s0 [29] is equivalent
to the Helfrich spontaneous curvature Js.

The third contribution to the energy (2) is appropriate
only for tilt and is determined by an independent elastic
constant κθ [10].

An explicit consideration of a combined deformation
of a fluid membrane determined by tilt tensor, tilt per se
and bending including computation of the relevant elastic
constants is performed in [23]. The Hamiltonian (2) results
from the equation of [23] in a case of vanishing bending.

The bending rigidity κ and the tilt modulus κθ are
directly related to the elastic moduli of the monolayer in-
terior [23] and have to be positive to provide the mechan-
ical stability of the system, κ, κθ > 0. On the other hand,
the spontaneous curvature Js and the modulus of Gaus-
sian curvature κ̄ are expressed through the distribution of
the microscopic stresses over the monolayer thickness [23],
their sign depending on the monolayer structure.

The possible behavior of the tilt tensor tξζ is limited
by the geometrical constraints of our model, specifically,
by i) the condition that the dividing surfaces are flat and
parallel to the outer boundaries of the unit cells; ii) the
incompressibility of the monolayer material; iii) the con-
stancy of molecular area at the dividing surface. The lo-
cal distance z between the dividing surface and the outer
boundary of the unit cell (Fig. 3) can be expressed [23]
within the accuracy of our model as

z = z0(1−
1

2
z0 t

ξ
ξ) (3)

where z0 is the value of z in undeformed state. For parallel
surfaces the distance z does not change, what means that

the trace of the tilt tensor tξξ has to remain constant along

the dividing surface, tξξ = const.

Based on the elastic model (2), we calculate the av-
erage energy per unit area of the dividing surface in all
the considered mesophases as functions of the elastic pa-
rameters. Comparing these energies we will construct the
phase diagram.

3 Energetics of mesophases and phase
diagram

3.1 Lamellar phase

In the lamellar L phase all the amphiphilic molecules are
subject to the same packing constraints and the properties
of the monolayers are assumed to be isotropic and homo-
geneous along the flat dividing surface of the amphiphilic

film. Therefore, the tilt vanishes everywhere, t = 0, tξζ = 0

and the average elastic energy (2) is

〈fL〉 =
1

2
κJ2

s . (4)

3.2 Inverted hexagonal HII phase

The monolayer of a hexagonal rod representing a unit cell
of the HII consists of six equal cassettes. Thus we con-
sider one cassette (Fig. 3) and choose the {x, y} system
of coordinates in the plane of the dividing surface, so that
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the y-axis is directed along the axis of the rod, and the
x-axis is perpendicular to it with the origin (x = 0) in the
middle of the cassette cross-section (Fig. 3).

The hexagonal rod is seen as infinitely long compared
to its cross-section. Thus, for the reasons of symmetry
we assume that the properties of the monolayers are ho-
mogeneous along the rod axis and the corresponding y-
component of the tilt vector vanishes

ty = 0. (5)

On the other hand, the tilt of the hydrocarbon chains
in the x-direction, tx, has to develop in order to fill the
corners of the unit cell of the hexagonal lattice (Fig. 3).

In the middle of the cassette, x = 0, tilt vanishes for
the reasons of symmetry, while at its boundaries the angle
θ between the vectors n and N adopts the values ±π6 so

that the absolute value of the tilt vector becomes ± 1√
3
.

Accounting for these conditions together with the require-
ment (3) we obtain

tx(x) =
2
√

3

x

a
(6)

where a is the length of the unit cell side determined at
the dividing surface (Fig. 3).

According to (5, 6) the tilt tensor has only one non-
vanishing component

txx =
∂tx

∂x
=

2
√

3

1

a
· (7)

Hence, its determinant vanishes, det(tξξ) = 0, what is
analogous to the vanishing Gaussian curvature of cylin-
drical surfaces.

Inserting (5–7) in (2) we obtain the energy per unit
area as a function of the position x along the dividing
surface

fHII =
1

2
κ

(
2
√

3a
+ Js

)2

+
2

3
κθ

(
x

a

)2

·

Averaging this energy over the area of the cassette, we
obtain

〈fHII 〉 =
1

2
κ

(
2
√

3a
+ Js

)2

+
κθ

18
· (8)

Remarkable feature of (8) is that its first term, analogous
to the bending energy, depends on the linear dimension a
of a unit cell, while the second, related to the tilt modulus
κθ, is independent from a.

The linear dimension a minimizing the bending energy
contribution to (8) is,

a∗HII = −
2
√

3

1

Js
· (9)

The negative sign in the right side of (9) means that the
energy (8) can be minimized if the spontaneous curvature

2

a

t

x

yθ

a

a

Fig. 5. One cassette of a unit cell of sc phase.

Js is negative. According to the convention adopted in [23]
and in the present work, the negative sign of Js indicates
a tendency of the monolayer to bend spontaneously to-
wards the water volume or to display due to the tilt the
corresponding splay of the hydrocarbon chains.

We will assume everywhere below the spontaneous cur-
vature of a monolayer to be negative, Js < 0.

The final average energy of the HII phase,

〈f∗HII 〉 =
κθ

18
, (10)

is determined solely by the tilt modulus κθ. This energy
can not be influenced by changing the linear dimension of
a unit cell and is, obviously, related to the lattice structure.
Hence, the contribution to the energy proportional to κθ is
the most direct characteristics of the packing constraints
of the lattice and will be called the frustration energy.

3.3 Inverted micellar cubic QII phases

Calculation of the energies of the cubic phases, although
more complicated, proceeds analogously to that of theHII

phase. We will sketch the calculation for the simple cu-
bic QIIsc phase and present the results obtained for the
QIIfcc phase.

A unit cell of the QIIsc is a cube consisting of 6 equal
square cassettes (Fig. 4a). Hence, we consider one of them
illustrated in Figure 5. The system of coordinates has its
origin in the middle of the dividing surface of the cassette
and is oriented as shown in (Fig. 5). The tilt vector has
two non- vanishing components, t = {tx, ty}. They can be
determined from the condition (3) and the boundary con-
ditions imposed on the change of the angle θ (between the
vectors n and N) along the circumference of the square.
Accounting for the symmetry of the simple cubic unit cell
we obtain

tx =
2

a
x, ty =

2

a
y (11)

where a is the length of the square side at the dividing
surface (Fig. 5), characterizing, as above, the linear di-
mension of the unit cell. The two diagonal components of
the tilt tensor do not vanish in this case, txx = tyy = 2

a .
Thus, both the trace and determinant of the tilt tensor
tξζ together with the tilt vector (1) contribute to the elas-

tic energy (2). Averaging this energy over the area of the
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cassette we obtain

〈fQIIsc〉 =
1

2
κ

(
4

a
+ Js

)2

+ κ̄
4

a2
+
κθ

3
· (12)

Minimization of the energy (12) with respect to the linear
dimension a results in

〈f∗QIIsc〉 =
1

2

κ κ̄

2κ+ κ̄
J2
s +

κθ

3
· (13)

In contrast to (10), the energy (13) contains the contribu-
tion determined by the elastic moduli κ, κ̄ and the spon-
taneous curvature Js. This is expected as the unit cell of
QII phase is analogous to a closed monolayer of spherical
topology, characterized by non-vanishing energy contribu-
tion of the Gaussian curvature. This contribution results
in competition of two tendencies. The first is minimization
of the energy proportional to the bending rigidity κ and
leading to a → −4/Js. The second is related to the term
proportional to the modulus of Gaussian curvature and
consists in increase or decrease of the linear dimension a
depending on sign of κ̄.

The resulting equilibrium linear dimension of the unit
cell is

a∗QIIsc = −2
(

2 +
κ̄

κ

) 1

Js
· (14)

Since the spontaneous curvature Js is assumed to be neg-
ative, the expression (14) implies(

2 +
κ̄

κ

)
> 0. (15)

We will assume everywhere below the condition (15),
which is the familiar criterion of stability of membranes
with respect to vesiculation [31], to be satisfied.

Performing an analogous calculation for the cubic
phase with fcc-lattice we take into account that a unit
cell consists of 12 equal rhombic cassettes (Fig. 4b). Con-
sideration of symmetry of a unit cell together with the
condition (3) results in distribution of components of the
tilt vector along the dividing surface of one cassette ,
tx = 2√

3
x
a ty = 2√

3

y
a . Based on this expressions we ob-

tain the average energy

〈f∗QIIfcc〉 =
1

2

κ κ̄

2κ+ κ̄
J2
s +

κθ

9
(16)

and the linear dimension of a unit cell

a∗QIIfcc = −
2
√

3

(
2 +

κ̄

κ

) 1

Js
·

The values of the frustration energy of the two cubic
phases represented by the last terms in (13, 16) are larger
than that of the HII phase (10). This is expected, as the
packing constraints are recognized to be stronger in the
inverted cubic QII phases than in the HII phase [17].

Table 1. Energy per unit area and linear dimension of ele-
mentary cell of different phases.

phase energy per area 〈f∗〉 a∗

Lα
1

2
κJ2

s

HII
κθ
18

2
√

3(−Js)

QII sc
1

3
κθ +

1

2

κ̄

2κ+ κ̄
κJ2

s

2

(−Js)
(2 +

κ̄

κ
)

QIIfcc
1

9
κθ +

1

2

κ̄

2κ+ κ̄
κJ2

s

2
√

3(−Js)
(2 +

κ̄

κ
)

The results obtained for the different mesophases are
summarized in Table 1.

3.4 Phase diagram

A mesophase with minimal energy is the stable one. Com-
paring the energies of different mesophases (Tab. 1) we
construct a hypothetical phase diagram as a function of
the elastic parameters of amphiphilic monolayer κ, κ̄, κθ
and Js.

The structure of the expressions for the energies
(Tab. 1) makes it convenient to scale the elastic moduli
in units of the bending modulus κ. We thus define a di-
mensionless parameter ξ = κ̄

κ
and a characteristic length,

λ =
√

κ
κθ

. The phase diagram will be determined by the

dimensionless order parameters ξ and λJs.
Consider first the two cubic phases, QIIsc and QIIfcc,

whose unit cells have a similar spherical topology, but
different symmetry. The contributions analogous to the
bending energy and determined by the elastic parameters
κ, κ̄ and Js are equal for the two phases. This is related to
the similarity of topology [32]. In contrast, due to the dif-
ferent symmetries the frustration energy is smaller in the
QIIfcc phase. The number of cassettes in a QIIfcc unit cell
is larger than in a simple cubic one, QIIsc. Thus, the max-
imal tilt angle, which has to be reached at the boundary
of the cassette is smaller and, hence, the geometrical con-
straints are weaker in the QIIfcc than in the QIIsc phase.
As a result, the simple cubic, QIIsc phase is energetically
less favorable than the QIIfcc phase for all feasible values
of the elastic parameters [33]. Similar results have been
obtained in a general form for colloidal crystals [34–36].
We will not further consider the QIIsc phase referring for
simplicity to QIIfcc as to QII phase.

Now we compare the energies of inverted hexagonal
HII phase, 〈f∗HII 〉, and that of the inverted cubic QII
phase, 〈f∗QII 〉. The frustration energy of the HII phase is
two times smaller than that of the QII phase (Tab. 1). On
the other hand, 〈f∗QII 〉, in contrast to 〈f∗HII 〉, has a contri-
bution analogous to the bending energy. The sign of this
contribution is determined by the modulus of Gaussian
curvature κ̄.
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Fig. 6. Phase diagram at positive modulus of Gaussian cur-
vature, κ̄ > 0.

Table 2. Equations of phase boundaries between different
pairs of phases.

Lα-HII
1

3
= (−λJs)

Lα-QIIfcc (−κ̄/κ) = 2− 9(−λJs)
2

HII-QIIfcc (−κ̄/κ) =
2

1 + 9(−λJs)2

If κ̄ > 0, the bending contribution further increases the
energy 〈f∗QII 〉 with respect to 〈f∗HII 〉 so that the QII phase
remains energetically less favorable than the HII phase
for all values of the other parameters. The phase diagram
involves in this case only the lamellar and the inverted
hexagonal phases (Fig. 6) and is determined solely by the
variable λJs. Transition from the lamellar to the inverted
hexagonal, HII , phase occurs at λJs = − 1

3 .

If the modulus of Gaussian curvature is negative, κ̄ <
0, the energy 〈f∗QII 〉 can become smaller than 〈f∗HII 〉, and
the inverted micellar cubicQII phase comes into play. The
resulting phase diagram involving all three phases is pre-
sented in Figure 7. The equations for the curves of coexis-
tence of pairs of phases determining the phase boundaries
in Figure 7 are summarized in Table 2. The phase diagram
consists of three regions separated by the solid lines. The
cubic phase occupies the upper part of the phase diagram
corresponding to the most negative values of the modulus
of the Gaussian curvature κ̄. The bottom part of the phase
diagram is shared by the lamellar, L, and the inverted
hexagonal, HII , phases, the latter occupying the range of
the more negative values of the spontaneous curvature Js.
The point of coexistence of all three phases (the triple
point) corresponds to the values of the order parameters,√

κ
κθ
Js = −1, κ̄

κ = − 1
3 . According to the phase diagram

(Fig. 7), a hypothetical experiment consisting in a gradual
change of the spontaneous curvature, Js, of monolayer at
fixed values of the other elastic parameters, can result in
a direct transition from the lamellar to the cubic phase,
L-QII , or in a sequence of phases including the hexagonal

α

Js

κ
κ

λ-

L

10.80.60.40.2

2

1.5

1

0.5

0

II

II

H

Q

(1)

(3)
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Fig. 7. Phase diagram at negative modulus of Gaussian cur-
vature κ̄ < 0. Solid lines determine the phase boundaries. The
dashed lines (1), (2) and (3) indicate hypothetical trajectories
of the system along the phase diagram at different values of κ̄.

phase, L-HII -QII , depending on the value of the modulus
of Gaussian curvature κ̄.

For comparison of the model with experimental results
it is instructive to derive the characteristic dimensions
of the phases in the points of phase transition. We will
relate to the linear dimension of a unit cell a presented
in Table 1. Based on this value and accounting for the
dimension of the polar heads of amphiphilic molecules,
one can easily calculate for each mesophase the dimension
of the water core of a unit cell, or, taking into account
the volume of the hydrocarbon chains, one can compute
the dimension of the outer boundary of a unit cell and
the repeating distances of the lattice. Inserting the con-
ditions of phase transitions expressed by the coexistence
curves (Tab. 2) into the equations for a of the HII and
QII phases (Tab. 1) we obtain the linear dimensions a∗

at phase transitions summarized in Table 3. The values
of a∗ scale with the characteristic length λ. For the tran-
sition between the L and HII phases, the dimensionless
value a∗

λ
is a fixed number, 2

√
3, while for the other phase

transitions it depends on the dimensionless spontaneous
curvature λJs, as illustrated in Figure 8. A remarkable
feature of the linear dimension a∗ is that in the triple
point it is equal a∗

λ = 2
√

3 both for the HII and QII
phases. This is not determined by general thermodynamic
requirement and holds only for the specific cubic phase
with fcc symmetry we consider.
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Table 3. Linear dimension of elementary cell of different
phases at phase boundaries.

coexistence phase a∗/λ
curve

Lα-HII HII 2
√

3

Lα-QIIfcc QIIfcc 6
√

3(−λJs)

HII-QIIfcc HII
2
√

3

1

(−λJs)

HII-QIIfcc QIIfcc
4√
3

1
(−λJs)

(
1− 1

1+9(λJs)2

)

II
α

ΙΙ

II
II
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Fig. 8. Diagram of linear dimensions of the mesophases at
phase transitions.

4 Discussion

We presented an alternative model of energetics and struc-
ture of the inverted amphiphilic mesophases.

The approach suggested in the present study addresses
in a natural way the packing constraints in the inverted
mesophases. The corners of the unit cells are filled by
the hydrophobic material due to the tilt of the hydro-
carbon chains linearly changing along the monolayer sur-
face. The volume incompressibility of the hydrocarbon
material is accurately taken into account by the change
of the distance between the monolayer dividing surface
and the outer boundary of the unit cell, as determined by
equation (3).

The frustration energy in our model is equal to the tilt
modulus κθ multiplied by a coefficient depending on the
type of mesophase. While this coefficient can be calculated
for each mesophase (Tab. 1), the tilt modulus κθ is inde-
pendent from all measured elastic constants of amphiphilic
monolayers and remains to be determined experimentally.
However, we can estimate κθ. The value of the frustration
energy per lipid (DOPE) molecule in the HII phase, ob-
tained according to Siegel’s approach [8] is 0.352kT [19]
(where k is the Boltzmann constant and T is the absolute
temperature). On the other hand, according to our model
(Tab. 1) this energy equals 1

18κθs, where s is the area per

molecule at the dividing surface s = 0.65 nm2 [26]. Thus,
we obtain for the tilt modulus

κθ = 40
mJ

m2
· (17)

This value is in accord with the crude estimation per-
formed in [23] using a oversimplified molecular model. Let
us emphasize that the value (18) is determined for par-
ticular phospholipid DOPE. The suggested model does
not allow for any generalization of this result such as de-
termination of the chain length dependence of the tilt
modulus κθ.

Using the available values of the bending rigidity,
κ ' 4.2 × 10−20J , and the spontaneous curvature, Js '
1
3 nm−1, of DOPE monolayer [19], and the estimated value
of the tilt modulus κθ (18), we can verify the model.

All the inverted cubic phases recently registered exper-
imentally [2,25] have the Fd3m symmetry, what is differ-
ent from the fcc cubic phase we considered in this work.
The accurate calculations for the Fd3m phase can be done
in our model, but turns out to be very complicated because
of the complex geometry of unit cells. On the other hand,
we performed the calculations (not shown) for the bcc cu-
bic phase approaching in its complexity the Fd3m phase,
and obtained the energy, 〈f∗〉, and the linear dimension of
a unit cell, a∗, close to those of the fcc phase [37]. There-
fore, we treat approximately the experimental results on
the Fd3m [2,25] by the model predictions received for the
fcc phase.

In homologous series of dialkyl α- and β-D-
xylopyranosylglycerols one observed three different se-
quences of temperature-induced phase transitions, the
character of the sequence depending on the hydrocarbon
chain length. For the short chains the sequence was L-to-
HII , for the intermediate chain length one found the se-
quence L-to-HII-to-QII and, finally, for the longest chains
the L-to-QII transition has been registered [2].

All these sequences of phases are predicted by the
phase diagram (Fig. 7) if one assume, according to [38],
that the modulus of Gaussian curvature κ̄ becomes more
negative with the chain length, and increase in the tem-
perature drives the spontaneous curvature Js to the more
negative values [19]. Hence, for the short chains the tra-
jectory of the system along the phase diagram is expected
to lie in its bottom part and to cross only the boundary
between the L and HII phases (Fig. 7, (1)), for the inter-
mediate chain length, the trajectory crosses two bound-
aries, L-HII and HII -QII (Fig. 7, (2)), and, finally for the
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longest chain length, the trajectory intersects only the L-
QII boundary (Fig. 7, (3)). Although our theory suits the
cited experimental observation, it should be noted, that
in the case of the xylolipids the lamellar L phase does not
expose lateral fluidity.

The measurements [25] provided one with an estima-
tion of the dimension of the water core of the Fd3m cubic
phase of the order of 1 nm. In our model, according to the
above values of the elastic parameters, the characteristic
length determining the linear dimensions of the unit cells

of mesophases at phase transition is
√

κ
κθ
' 1 nm. Thus,

the linear dimension of the cubic phase a∗ is of the or-
der of 2−3 nm (Fig. 8). To estimate the dimension of the
water core we account for the thickness of the layer of po-
lar heads separating the dividing surface, from the water
interior and obtain 1−2 nm, what agrees in the order of
magnitude with the experimental results [25].

The linear dimensions of unit cells of the HII phases
resulting from X-rays data have been accurately calcu-
lated for DOPE in the point of phase transition between
the lamellar and the inverted hexagonal phases [26]. It
has been shown that the thickness z of the monolayer
in the middle of a cassette of the HII phase unit cell is
25% smaller than the thickness z0 of a monolayer in the
L phase. To treat this observation the authors [26] as-
sumed that the hydrocarbon chains are tilted along the
cylinder axis resulting in breaking the symmetry in this
direction. In our model this decrease of the monolayer
thickness is naturally explained by the splay of the hydro-
carbon chains. The relationship between the monolayer
thickness z and its initial value z0 is given by (3). Taking
into account that for the HII phase the trace of the tilt

tensor tξξ = 2√
3

1
a , the linear dimension of a unit cell is

a ' 3 nm [26], and the initial thickness z0 ' 1.5 nm, we
obtain z

z0
' 0.75 in agreement with the result [26].

In spite of reasonable agreement with the experimen-
tal data, the suggested model is, definitely, an approxima-
tion illustrating the effects of tilt rather than pretending
to complete description of the structure and energetics of
the inverted mesophases. Indeed, we excluded from consid-
eration the two other possible deformations, namely, the
monolayer bending and area stretching. Accounting for
these deformations besides the tilt requires minimization
of the overall energy within the geometrical constraints
and the related determination of the new distributions of
tilt, molecular stretching and curvature along the divid-
ing surface. Realization of this program is complicated and
goes beyond the goal of the present work. However it is
obvious, that the extended model will allow for relaxation
of the energy and for a better determination of the tilt
modulus κθ, which is overestimated in (18).

The further development of the model is also required
by the experimental results. Indeed, in our picture the
fragments of monolayers constituting a unit cell of an
inverted mesophase remain flat and, thus, form the an-
gles along their lines of intersection. Although within the
framework of our model such sharp intersections do not
result in any singularities of the energy and are in accord

with equilibrium between the contacting cassettes, in re-
ality the angles are smoothen out, as it is seen on the re-
constructed profiles of the electron density [24]. The most
probable reason for this smoothening is the steric repul-
sion between the polar groups of amphiphilic molecules
along the lines of intersection, which is not taken into ac-
count by the model. The resulting bending of the mono-
layer and the related changes in the tilt distribution have
to be considered by the more sophisticated approach.

We are grateful to Richard Epand, Sol Gruner, Wolfgang
Helfrich, Sergey Leikin, Adrian Parsegian, David Siegel and
Richard Templer for fruitful discussions.
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